kendriva Vidyalaya sangathan

Marking Scheme -Miathematical Olympiad - Stage I-2015
Note: All alternate solutions are to be accepted at par. Please asses what a student know in place of what he doesn't know.

1. When the tens digit of a three digit number $\overline{a b c}$ is deleted, a two digit number $\overline{a c}$ is formed. How many numbers $\overline{a b c}$ are there such that

$$
\overrightarrow{a b c}=5 \overline{a c}+4 \mathrm{c} .
$$

Soln. Let the three digit no. $\overline{a b c}$ be $100 a+100+c$ and similarly $\overline{a c}=10 a+c \quad 2$ marks
As per given equation $100 a+10 b+c=9 *(10 a+c)+4 c$
which gives on simplification
$5(a+b)=6 c$
Since a, b, c are integers between 0 and 9 and $a \neq 0$, The only possibility is $a+b=6$ and $c=5$
so by taking $b=6-a$. six possible numbers arise by taking $a=1,2,3,4,5,6$
So there are six three digit numbers.
2. Let $p(x)=x^{2}+b x+c$ where b and c are integers. $p p(x)$ is a factor of both $x^{4}+6 x^{2}+25$ and $3 x^{4}+4 x^{2}+28 x+5$, find the value of $p(1)$?
Soln.
$x^{4}+6 x^{2}+25=\left(x^{4}+10 x^{2}+25\right)-4 x^{2}$
1 mark
$\Rightarrow\left(x^{2}+5\right)^{2}-(2 x)^{2}$
$\Rightarrow\left(x^{2}+5+2 x\right)\left(x^{2}+5-2 x\right)$
\Rightarrow So $p(x)$ is either $x^{2}+5+2 x$ or $x^{2}+5-2 x$

$$
2 \text { marks }
$$

\Rightarrow By long division we find that only $x^{2}-2 x+5$ is factor of $3 x^{+}+4 x^{2}+28 x+5$.
\Rightarrow So $3 x^{4}+4 x^{2}+28 x+5=\left(x^{2}-2 x+5\right)\left(3 x^{2}+6 x+1\right)$ 3 marks
$\Rightarrow p(x)=x^{2}-2 x+5$
$\Rightarrow p(1)=4$
3. A square is inscribed in an equilateral triangle. Find the ratio of area of the square to that of the triangle.
Solution:

Fig 1 mark

Let the side of square be ' a ' so AG " $=\frac{\sqrt{3}}{2}$ a and $\mathrm{GD}=\mathrm{a}$
So $\mathrm{AD}=\mathrm{AG}+\mathrm{GD}=\left(\frac{\sqrt{3}}{2}+1\right) \mathrm{a}-$ \qquad
If ' b ' be the side of equilateral triangle. Altitude of triangle is $\mathrm{AD}=\frac{\sqrt{3}}{2} \mathrm{~b} \ldots \ldots \ldots$.
From 1 and $2, \quad\left(\frac{\sqrt{3}}{2}+1\right) a=\frac{\sqrt{3}}{2} b$
So $\mathrm{a}=\frac{\sqrt{3}}{2+\sqrt{3}} b$

$$
3 \text { marks }
$$

Now area of square $=a^{2}=\frac{3}{7+4 \sqrt{3}} b^{2}$
2 marks
Area of Triangle $=\frac{\sqrt{3}}{4} b^{2}$
Ratio of areas of Square to Triangle $: \frac{3}{7+4 \sqrt{3}} b^{2}: \frac{\sqrt{3}}{4} b^{2}$

$$
\frac{\sqrt{3}}{7+4 \sqrt{3}}: \frac{1}{4}=4 \sqrt{3}: 7+4 \sqrt{3}
$$

4. (a) Prove that $\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+\ldots \ldots .+\frac{1}{98}-\frac{1}{99}+\frac{1}{100}>\frac{1}{5}$

$$
\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{4}-\frac{1}{5}\right)+\ldots \ldots \ldots+\left(\frac{1}{98}-\frac{1}{99}\right)+\frac{1}{100}
$$

$$
3 \text { marks }
$$

Soln. $\frac{1}{6}+\frac{1}{20}+\ldots \ldots \ldots \ldots .+\frac{1}{9702}+\frac{1}{100}$
\Rightarrow Now Let us find $\frac{1}{6}+\frac{1}{20}=\frac{13}{60}=\frac{12+1}{60}=\frac{12}{60}+\frac{1}{60}=\frac{1}{5}+\frac{1}{60}>\frac{1}{5}$
So $\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{4}-\frac{1}{5}\right)+\ldots \ldots \ldots+\left(-\frac{1}{99}+\frac{1}{100}\right)>\frac{1}{5}$
1 mark
4 Find the largest prime factor of $3^{12}+2^{12}-2.6^{6}$ (b)

Soln

$$
\begin{aligned}
& \left.3^{6}\right)^{2}+\left(2^{6}\right)^{2}-2 \cdot 3^{6} \cdot 2^{6} \\
& =>\left(3^{6}-2^{6}\right)^{2}=\left\{\left(3^{3}\right)^{2}-\left(2^{3}\right)^{2}\right\}^{2} \\
& \Rightarrow\left\{\left\{\left(3^{3}+2^{3}\right)\left(3^{3}-2^{3}\right)\right\}^{2}\right. \\
& \Rightarrow\left\{(3-2)(9+4+6)\left(3^{3}+2^{3}\right)\right\}^{2} \\
& =>\{(19)(3+2)(9+4-6)\}^{2} \\
& =>\{(19)(5)(7)\}^{2}
\end{aligned}
$$

So largest prime factor is 19
5. Surface area of a sphere A is 300% more than the surface area of another sphere B. If the volume of sphere B is $p \%$ less than the volume of sphere A,find the value of ' p '.

Soln. Let the radius of sphere B be ' r '
So its surface area $=4 \pi r^{2}$
Let surface area of A be S which is 300% more than that of B

$$
\begin{array}{ll}
& \frac{\left(s-4 \pi r^{2}\right)}{4 \pi r^{2}} X 100=300 \\
& \Rightarrow s-4 \pi r^{2}=12 \pi r^{2} \\
\text { So we get } & \\
\Rightarrow s=16 \pi r^{2} & 1 \text { marks }
\end{array}
$$

Let radius of sphere A be R so $4 \pi R^{2}=16 \pi r^{2}$

$$
\Rightarrow \text { We get } R=2 r
$$

\Rightarrow Now volume of sphere $\mathrm{A}=\frac{4}{3} \pi R^{3}$

$$
\Rightarrow \frac{4}{3} \pi(2 r)^{3}=\frac{32}{3} \pi r^{3}
$$

Volume of sphere B be $=\frac{4}{3} \pi r^{3}$ which is $p \%$ less than that of A

$$
\begin{aligned}
& \quad \frac{\frac{32 \pi r^{3}}{3}-\frac{4}{3} \pi r^{3}}{\frac{32}{3} \pi r^{3}} \times 100=p \\
& \\
& \\
& \frac{\frac{28}{3} \pi r^{3}}{\frac{32}{3} \pi r^{3}} \times 100=p \\
& \Rightarrow \quad \Rightarrow p=\frac{700}{8}=87.5
\end{aligned}
$$

6. ABC is an isosceles triangle in which $\mathrm{AB}=\mathrm{AC}=25 \mathrm{~cm}$ and $\mathrm{BC}=14 \mathrm{~cm}$ Find the difference of the circum-radius and in- radius of the triangle.

Soln. Draw $A D \perp B C$ as $A B=A C$ so D will be mid point of $B C$
Now we have $A B^{2}=A D^{2}+B D^{2}$

$$
\begin{aligned}
& \Rightarrow(25)^{2}=(A D)^{2}+(7)^{2} \\
& =A D=24
\end{aligned}
$$

Let O be the In-centre of the triangle. So OD is in-radius.
Now area of $\quad A B C=\frac{1}{2} B C X A D=\frac{1}{2} \times 14 \times 24=168 \mathrm{~cm}^{2}$. \square
(1) 2 marks

Also are of Triangle $A B C=\frac{1}{2}(A B+B C+A C)^{*} r$ where r is in-radius.

$$
=32^{*} \mathrm{rcm}^{2} .
$$

From (1) and (2) we get $r=\frac{21}{4} \mathrm{~cm}$.

$$
2 \text { marks }
$$

. Let P be the Circumcentre of the Triangle ABC .

Let $\mathrm{PA}=\mathrm{PB}=\mathrm{PC}=\mathrm{R}=$ the Circum-radius
So $P D=24-R$
Now from Triangle $\mathrm{PBD}, \mathrm{PR}^{2}=\mathrm{PD}^{2}+\mathrm{BD}^{2}$
$\Rightarrow \mathrm{R}^{2}=(24-\mathrm{R})^{2}+7^{2}$
$\Rightarrow \mathrm{R}^{2}=576-48 \mathrm{R}+\mathrm{R}^{2}+49$

$$
\Rightarrow \mathrm{R}=\frac{625}{48}
$$

Now required difference of two radii $=\left(\frac{625}{48}-\frac{21}{4}\right)$

$$
=\frac{373}{48} \mathrm{~cm}
$$

1 mark
7. AB and BC are two equal chords of a circle of length $2 \sqrt{5} \mathrm{~cm}$ each. If radius of the circle is 5 cm , find the length of the chord $A C$.
Soln. Let O be the centre of the circle Join $O A, O B$ and $O C$.
$A s A B=B C$ so $O B$ will be the perpendicular bisector of $A C$
fig- 1 mark

Let $O B$ intersect $A C$ at D and perpendicular to $A D$, Ler $O D=x$, so $B D=5-x$

Now from Triangle $\mathrm{OAD}, \mathrm{OA}^{2}=\mathrm{AD}^{2}+\mathrm{OD}^{2}$
$\Rightarrow 25=\mathrm{AD}^{2}+\mathrm{x}^{2}$
\Rightarrow From triangle BDA we get, $\mathrm{AB}^{2}=\mathrm{AD}^{2}+\mathrm{BD}^{2}$
$\Rightarrow(2 \sqrt{5})^{2}=A D^{2}+(5-x)^{2}$
\Rightarrow From (1) and (2) we get $x=3$
\Rightarrow Putting this value we get $\mathrm{AD}=4$
\Rightarrow So $A C=2 A D=8 \mathrm{~cm}$.

8. Two dice are thrown simultaneously. Find the sum of the probability of "getting a prime number as a sum" and probability of "getting a doublet of prime numbers."

Soln. Total No. of outcomes $=6 \mathrm{X} 6=36$
Outcomes for getting a prime number as sum are:
$(1,1),(1,2),(1,4),(1,6),(2,1),(2,3),(2,5),(3,2),(3,4),(4,1),(4,3),(5,2),(5,6),(6,1)$ and $(6,5)=15$ outcomes
So probability (Sum as Prime number : $=\frac{15}{36}$
Further, Prime doublets are $(2,2),(3,3),(5,5)$
So probability of a doublet as prime No. $=\frac{3}{36}$

Now required probability $=\frac{15}{36}+\frac{3}{36}=\frac{1}{2}$

2 marks

2 marks
9. A person starts from a place P towards another place Q at a speed of 30 km / h. After every 12 minutes, he inereases his speed by $5 \mathrm{~km} / \mathrm{h}$. If the distance between P and Q is 51 km ., find the time taken by him to cover the whole distance.

Soln. Let he covers the distance in n intervals of 12 minutes each.

In the first interval speed is $30 \mathrm{~km} / \mathrm{h}$ so distance travelled $=30 \times 12 \mathrm{Min}=6 \mathrm{~km}$.
In the $2^{\text {nd }}$ interval speed is $35 \mathrm{~km} / \mathrm{h}$, so distance $=35 \times 12 \mathrm{~min}=7 \mathrm{~km}$.
And so on.
So total distance travelled in n intervals $=6+7+8+$ \qquad .up to n terms.

$$
\begin{aligned}
& \Rightarrow \quad \frac{n}{2}\{2 \times 6+(n-1) \times 1\} \\
& \Rightarrow \quad \frac{n^{2}+11 n}{2} k m=51 \mathrm{~km}(\text { given })
\end{aligned}
$$

$$
2 \text { marks }
$$

$\Rightarrow \mathrm{n}^{2}+11 \mathrm{n}-102=0$
\Rightarrow on simplification it gives $n=-17$ (rejected) and 6
\Rightarrow so there are 6 intervals of 12 min each.
\Rightarrow Hence total time $6 \times 12=72$ minutes.
10. Solve for ' x ' ;

$$
4\left(x-\frac{1}{x}\right)^{2}+8\left(x+\frac{1}{x}\right)=29
$$

Soln. The equation can be written as

$$
\begin{aligned}
& 4\left(x^{2}+\frac{1}{x^{2}}-2\right)+8\left(x+\frac{1}{x}\right)-29=0 \\
& \Rightarrow 4\left(x^{2}+\frac{1}{x^{2}}\right)+8\left(x+\frac{1}{x}\right)-37=0 \\
& \quad x+\frac{1}{x}=y
\end{aligned}
$$

So the equation reduces to $4\left(y^{2}-2\right)+8 y-37=0$

$$
\begin{aligned}
& \Rightarrow 4 y^{2}+8 y-45=0 \\
& \Rightarrow(2 y-5)(2 y+9)=0 \\
& \Rightarrow Y=5 / 2 \text { or } y=-9 / 2
\end{aligned}
$$

\Rightarrow When $y=5 / 2$ we get $x+\frac{1}{x}=\frac{5}{2}$
$\Rightarrow 2 x^{2}-5 x+2=0$
$\Rightarrow(x-2)(2 x-1)=0$ this gives $x=2$ or $1 / 2$
\Rightarrow Taking $y=-9 / 2$

$$
\Rightarrow \text { We get } x=\frac{-9 \pm \sqrt{65}}{4}
$$

